Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- pytorch
- 연결리스트
- 경사하강법
- body-parser
- 삽입식 힙
- urlencoded
- 힙정렬
- 해시테이블
- 상향식 힙
- Loss함수
- MSE
- 분리연쇄법
- 딥러닝
- upheap
- nodejs
- 알고리즘
- 이중연결리스트
- 이중해싱
- 선형회귀
- bodyparser
- downheap
- vsCode
- ML
- 2차조사법
- 개방주소법
- POST
- 선형조사법
- anaconda
Archives
- Today
- Total
목록MSE (1)
LittleDeveloper
모두의 딥러닝 3장 선형회귀법
필자는 전필로 선형대수를 들으면서 '선형회귀'라는 것을 처음 배웠다. 그리고 그 다음 학기에 확률통계를 배우면서 선형회귀 수식과 그래프를 엑셀과 매트랩으로 간단하게 나타나는 것을 배웠다. 처음에는 고등학교 수학 수준에서 금방 이해가 되니까 딱히 어려울 것도 없어서 '왜 배워야 하지..'라는 의문조차 안 들었었는데, 작년 여름 방학에 머신러닝 입문 강의(모두의 딥러닝x)를 듣다가 '오..이래서 배우는구나..'라는 마음가짐으로 전환되었다. 머신러닝의 지도학습 기법에는 크게 2가지가 있다. 1. 회귀 2. 분류 그럼 머신러닝은 뭐고.. 지도학습이란 무엇인가.. (이거는 따로 정리해서 포스트할 예정! 조금만..기다려...~) (일단 머신러닝의 기법은 지도학습, 비지도학습, 강화학습 이렇게 3가지로 나뉜다. 정도..
AI
2022. 1. 8. 14:41